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The growing application of combinatorial organic syn-
thesis1 on solid support has been reflected in the rapidly
increasing reaction types and synthetic strategies. It has been
regarded as an important tool for the synthesis of a large
number of pharmaceutically interesting compounds. Coupled
with high-capacity screening systems, this technology may
revolutionize the drug discovery process. However, the solid-
phase approach often requires additional research and
development time. We are focusing our research efforts on
liquid-phase combinatorial synthesis (LPCS) using soluble
polymer supportspoly(ethylene glycol) monomethyl ethers
of MW 5000 to generate libraries.2 This macromolecular
carrier, in contrast to an insoluble matrix, is soluble in most
organic solvents and has a strong tendency for precipitation
in certain solvents. After complete reaction, the product
remains covalently bound to the support, and purification
can be accomplished after precipitation simply by filtering
and washing away the unwanted material.

The guanidine and urea functional groups are crucial
components in many medicinally interesting molecules.3

Therefore, practical methods of rapidly synthesizing guani-
dine- or urea-containing molecules are of great interest in
drug discovery and lead optimization. To study the soluble
polymer-supported synthesis of piperidine- and piperazine-
containing guanidines,4 we investigated the reactions of three
separate PEG-bound amines2f (1-3) with the newly devel-
oped guanylating reagent5 N,N′-di-Boc-N′′-triflylguanidine
4 under basic conditions in CH2Cl2 (Scheme 1).

Results are summarized in Table 1. It can be seen that
aminoguanylation proceeds smoothly at room temperature
to give the correspondingN,N′-di(Boc)-protected guanidines.
Progress of reaction is easily followed by TLC analysis
(observation of disappearing4) and is conveniently estimated
by 1H NMR without any polymer cleavage. Guanidines are
liberated from the polymer support by 1% KCN/MeOH in
high yield (80-95%) and high purity (82-86%).6 Although
the exact intermediates for the guanidine formation are
unknown, the possible in situ generated highly electrophilic
bis(Boc)carbodiimide may be the reactive species.7

To increase the chemical diversity of the library, polymer-
bound guanidine8 is reacted with various amines. It is
expected that the desired product could be cleaved by the
transamination from the polymer support. However, we find
that no products are liberated from the PEG-supported
guanidines in refluxing THF. Instead of the desired ami-
nolysis product, one compound has been isolated and
identified as the amidinourea10after cleavage (Scheme 2).8

Although aminolysis of many carbamates is well under-
stood,9a the Boc-protecting group is known to be particularly
stable under basic conditions and is also strongly resistant
toward various nucleophilic reagents.9b Therefore, a brief
investigation of the range of applicability in this discovery
was carried out. Results are reported in Table 2. Treatment
of polymer-bound guanidine8 with several different primary
amines (entries 1-7) results in the complete conversion of
N,N′-bis(tert-butoxycarbonyl)guanidines to theN-(N′-tert-
butoxycarbonylamidino)ureas on the support. The coupling
reaction proceeds well by treatment with 3 equiv of an amine
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in THF after heating for 8 h. Excess amines can be easily
washed away after precipitation of PEG-bound products. It
is worth mentioning that poorly nucleophilic, sterically
hindered aniline also reacts well to form corresponding
amidinourea (entry 7). Moreover, this method is also
successfully applied to secondary amines and generated the
N,N,N′-trisubstituted ureas in high yield and high purity
(entries 8-10). The greater reactivity of the secondary
amines can be realized by the fact that secondary amines

need less time (around 5 h) to complete reactions, since they
are more nucleophilic than primary amines. In contrast to
the other approaches10 using n-BuLi for carbamate depro-
tection, our method demonstrates the advantages of the one-
pot procedure to prepare Boc-substituted amidinoureas. It is
worthy to note that, in contrast to the various restrictions on
the analysis of reaction development in solid-phase synthesis,
liquid-phase synthesis allows routine analytical instruments
(UV, IR, NMR, TLC) to monitor reaction progress without

Table 1. Liquid-Phase Synthesis ofN,N′-Bis-Boc-guanidines

a Yields are based on weight of crude sample and are relative to the initial loading.b Purity determined by HPLC analysis of crude
products. Products show satisfactory1H NMR and MS data, which are consistent with the proposed structure.

Table 2. Preparation of Amidinoureas10 from N,N′-Di(Boc)guanidine on the Support

a Confirmed by mass spectra (FAB+). b Yields are based on weight of crude sample and are relative to the initial loading.c Purity determined
by HPLC analysis of crude products. Products show satisfactory1H NMR and MS data, which are consistent with the proposed structure.
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following the cleaVe-and-analyzetechnique. This nonde-
structive approach to monitor reaction progress makes the
LPCS method even more valuable.

In conclusion, a facile and efficient liquid-phase method
that employs a soluble polymer support to synthesize
guanidines and amidinoureas has been presented. The scope
of the coupling method is assessed using a variety of aromatic
and aliphatic amines including aniline. All reactions involved
are highly efficient in giving the desired compounds in high
yields and high purity just by simple precipitation and
washing. This method of synthesis is versatile and produces
compounds with known pharmacophoric scaffolds, which are
thus ideally suited for combinatorial library generation.
Further work on the mechanism of aminolysis is actively in
progress.
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